Structure Reports

Online
ISSN 1600-5368

Jin Lin, Shan-Sheng Xu* and Hai-Bin Song

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: shanshengxu@126.com

Key indicators

Single-crystal X-ray study

$T=294 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.036$
$w R$ factor $=0.080$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-Ferrocenyl-1-(1H-indenyl)cycloheptane

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{21} \mathrm{H}_{23}\right)\right]$, the cyclopentadienyl (Cp) rings deviate slightly from an eclipsed geometry. The cycloheptane ring adopts a chair conformation. The unsubstituted and substituted Cp rings form dihedral angles of $55.62(12)$ and $54.13(10)^{\circ}$, respectively, with the indene ring system.

Comment

Because of their catalytic properties, a number of ferrocenesubstituted indenyl derivatives, e.g. 2-(3-indenyl)-2(ferrocenyl)propane (Gaede, 2000), 1-(ferrocenyl)indene and 2-(ferrocenyl)indene (Plenio, 1992), have been structurally characterized. We present here the synthesis and crystal structure of the title compound, (I).

(I)

A view of (I), with the atomic numbering scheme, is shown in Fig. 1; selected bond lengths and angles are given in Table 1. The $\mathrm{Fe} 1 \cdots C g 1$ and $\mathrm{Fe} 1 \cdots C g 2$ distances are 1.666 (2) and 1.661 (2) \AA, respectively, and the $C g 1-\mathrm{Fe} 1-C g 2$ angle is $176.86(8)^{\circ}$, where $C g 1$ and $C g 2$ are the centroids of the unsubstituted and substituted Cp rings, respectively. The Cp rings deviate slightly from an eclipsed geometry. The indene ring system is planar, with an r.m.s. deviation of $0.025 \AA$. The unsubstituted and substituted Cp rings form dihedral angles of 55.62 (12) and $54.13(10)^{\circ}$, respectively, with the indene plane. The cycloheptane ring adopts a chair conformation. The crystal packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2).

Experimental

A solution of indene ($1.39 \mathrm{ml}, 12 \mathrm{mmol}$) in tetrahydrofuran (THF, 100 ml) was reacted with n-butyllithium (12 mmol) at 273 K for 2 h and then stirred at room temperature for 4 h . A solution of $6,6-$ hexamethylenefulvene ($1.92 \mathrm{~g}, 12 \mathrm{mmol}$) in THF (20 ml) was added dropwise to the above reaction system at 273 K with stirring. When the addition was completed, the solution was warmed to room temperature and stirring was continued overnight. Cyclopentadienyllithium (12 mmol) in THF (20 ml) was added to this reaction mixture. $\mathrm{FeCl}_{2} \cdot 1.44 \mathrm{THF}(2.78 \mathrm{~g}, 12 \mathrm{mmol})$ was then added to the above mixture and the resulting mixture stirred overnight. The

Received 31 August 2005 Accepted 15 September 2005 Online 21 September 2005
\qquad
solvent was removed in a vacuum. The residue was run through a short column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielding compound (I), which was collected and purified by chromatography on alumina, to give crystals of (I) (1.23 g , yield 25.86%). Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Fe}$: C 78.79, H 7.12\%; found: C 78.50, H 6.99%.

Crystal data

[$\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{21} \mathrm{H}_{23}\right)$]
$M_{r}=396.33$
Monoclinic, $C c$
$a=6.2777(16) \AA$
$b=34.562$ (9) \AA
$c=9.321$ (2) \AA
$\beta=90.443(4)^{\circ}$
$V=2022.3$ (9) \AA^{3}
$Z=4$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.736, T_{\text {max }}=0.847$
5671 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.080$
$S=1.00$
3703 reflections
244 parameters
H -atom parameters constrained

$$
D_{x}=1.302 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2325
reflections
$\theta=2.5-24.8^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, red
$0.26 \times 0.24 \times 0.22 \mathrm{~mm}$

3703 independent reflections
3102 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-42 \rightarrow 20$
$l=-10 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0341 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \quad \text { with } 1633 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.01(2)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{C} 1$	$2.042(3)$	$\mathrm{Fe} 1-\mathrm{C} 6$	$2.048(3)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$2.029(3)$	$\mathrm{Fe} 1-\mathrm{C} 7$	$2.033(3)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$2.048(4)$	$\mathrm{Fe} 1-\mathrm{C} 8$	$2.034(3)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$2.063(3)$	$\mathrm{Fe} 1-\mathrm{C} 9$	$2.053(3)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$2.051(3)$	$\mathrm{Fe} 1-\mathrm{C} 10$	$2.095(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C8-H8 $\cdots C g 1^{\mathrm{i}}$	0.93	2.76	$3.689(4)$	173
C17-H17B $\cdots C g 3^{\mathrm{ii}}$	0.97	2.67	$2.987(3)$	100
C20-H20 $\cdots C g 4^{\text {iii }}$	0.93	2.87	$3.618(5)$	138
C25-H25 $\cdots C 2^{\text {ii }}$	0.93	2.80	$3.540(4)$	137

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) x, y, z; (iii) $x,-y, z-\frac{1}{2} . C g 1, C g 2, C g 3$ and Cg4 denote the centroids of rings C1-C5, C6-C10, C18-C21/C26 and C21-C26, respectively.

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omited for clarity.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant Nos. 20421202 and 20472034), and the Research Fund for the Doctoral Programme of Higher Education of China (grant No. 20030055001).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gaede, P. E. (2000). J. Organomet. Chem. 616, 29-63.
Plenio, H. (1992). Organometallics, 11, 1856-1859.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography All rights reserved

